Category O over a Deformation of the Symplectic Oscillator Algebra

نویسندگان

  • Apoorva Khare
  • APOORVA KHARE
چکیده

We discuss the representation theory of Hf , which is a deformation of the symplectic oscillator algebra sp(2n) ⋉ hn, where hn is the ((2n+1)-dimensional) Heisenberg algebra. We first look at a more general algebra with a triangular decomposition. Assuming the PBW theorem, and one other hypothesis, we show that the BGG category O is abelian, finite length, and self-dual. We decompose O as a direct sum of blocks O(λ), and show that each block is a highest weight category. In the second part, we focus on the case Hf for n = 1, where we prove all these assumptions, as well as the PBW theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantized Symplectic Oscillator Algebras of Rank One

A quantized symplectic oscillator algebra of rank 1 is a PBW deformation of the smash product of the quantum plane with Uq(sl2). We study its representation theory, and in particular, its category O.

متن کامل

ar X iv : m at h / 04 05 17 6 v 3 [ m at h . R T ] 1 7 N ov 2 00 4 QUANTIZED SYMPLECTIC OSCILLATOR ALGEBRAS OF RANK ONE

A quantized symplectic oscillator algebra of rank 1 is a PBW deformation of the smash product of the quantum plane with Uq(sl2). We study its representation theory, and in particular, its category O.

متن کامل

ar X iv : m at h / 04 05 17 6 v 4 [ m at h . R T ] 1 6 Ju n 20 06 QUANTIZED SYMPLECTIC OSCILLATOR ALGEBRAS OF RANK ONE

A quantized symplectic oscillator algebra of rank 1 is a PBW deformation of the smash product of the quantum plane with Uq(sl2). We study its representation theory, and in particular, its category O.

متن کامل

N ov 2 00 5 CATEGORY O OVER SKEW GROUP RINGS

We study the BGG Category O over a skew group ring, involving a finite group acting on a regular triangular algebra. We relate the representation theory of the algebra to Clifford theory for the skew group ring, and obtain results on block decomposition, semisimplicity, and enough projectives. O is also shown to be a highest weight category; the BGG Reciprocity formula is slightly different bec...

متن کامل

Ja n 20 06 CATEGORY O OVER SKEW GROUP RINGS

We study the BGG Category O over a skew group ring, involving a finite group acting on a regular triangular algebra. We relate the representation theory of the algebra to Clifford theory for the skew group ring, and obtain results on block decomposition, semisimplicity, and enough projectives. O is also shown to be a highest weight category; the BGG Reciprocity formula is slightly different bec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004